Designing disordered hyperuniform two-phase materials with novel physical properties

نویسندگان

  • D. Chen
  • S. Torquato
چکیده

Heterogeneous materials consisting of different phases are ideally suited to achieve a broad spectrum of desirable bulk physical properties by combining the best features of the constituents through the strategic spatial arrangement of the different phases. Disordered hyperuniform heterogeneous materials are new, exotic amorphous matter that behave like crystals in the manner in which they suppress volumefraction fluctuations at large length scales, and yet are isotropic with no Bragg peaks. In this paper, we formulate for the first time a Fourier-space numerical construction procedure to design at will a wide class of disordered hyperuniform two-phase materials with prescribed spectral densities, which enables one to tune the degree and length scales at which this suppression occurs. We demonstrate that the anomalous suppression of volume-fraction fluctuations in such two-phase materials endow them with novel and often optimal transport and electromagnetic properties. Specifically, we construct a family of phase-inversion-symmetric materials with variable topological connectedness properties that remarkably achieves a well-known explicit formula for the effective electrical (thermal) conductivity. Moreover, we design disordered stealthy hyperuniform dispersion that possesses nearly optimal effective conductivity while being statistically isotropic. Interestingly, all of our designed materials are transparent to electromagnetic radiation for certain wavelengths, which is a common attribute of all hyperuniform materials. Our constructed materials can be readily realized by 3D printing and lithographic technologies. We expect that our designs will be potentially useful for energy-saving materials, batteries and aerospace applications. © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective media properties of hyperuniform disordered composite materials

The design challenge of new functional composite materials consisting of multiphase materials has attracted an increasing interest in recent years. In particular, understanding the role of distributions of ordered and disordered particles in a host media is scientifically and technologically important for designing novel materials and devices with superior spectral and angular properties. In th...

متن کامل

Photonic Band Gaps and Unusual Photon Transport in Hyperuniform Disordered Structures

We demonstrate that hyperuniform disordered structures support electromagnetic states with very different transport properties, ranging from Bloch-like modes to diffusive states with characteristic time scales almost two-orders of magnitude larger. ©2012 Optical Society of America OCIS codes: 130.5296, 130.7408, 160.5293, 160.5298 Recently, a new class of disordered materials with large complet...

متن کامل

Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem.

Optimal spatial sampling of light rigorously requires that identical photoreceptors be arranged in perfectly regular arrays in two dimensions. Examples of such perfect arrays in nature include the compound eyes of insects and the nearly crystalline photoreceptor patterns of some fish and reptiles. Birds are highly visual animals with five different cone photoreceptor subtypes, yet their photore...

متن کامل

Hyperuniformity and its generalizations.

Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystal and liquid: They are like perfect crystals in the way they suppress large-scale density fluctuations and yet are like liquids or glasses in that they are statistically isotropic with no Bragg peaks. These exotic states of matter play a vital role in a number of problems across the physic...

متن کامل

High-Q optical cavities in hyperuniform disordered materials

We introduce designs for high-Q photonic cavities in slab architectures in hyperuniform disordered solids displaying isotropic band gaps. Despite their disordered character, hyperuniform disordered structures have the ability to tightly confine the transverse electric-polarized radiation in slab configurations that are readily fabricable. The architectures are based on carefully designed local ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017